
#***

"Earth Outer Core Radius"

This Python program calculates the radius of the Earth's outer core using seismic waves

from earthquakes.

Written on March 30, 2019 by Veronica Sofia Parra.

Data

Station [Seismic Station, Latitude, Longitude, Earthquake Name, Date, Time (GMT),

Magnitude (Mw), Depth (km), Latitude, Longitude, Degrees, Distance (km),

S-Wave Recording]

station11 = ['Northview_High_School', 39.52, -87.17, 'S_of_Fiji_Islands', \

 'April_2_2018','GMT_055735', 6.1, 42.0, -24.719, -176.8865, \

 105.23, 11700.37, 'Y']

station12 = ['Eastern_Greene_High_School', 39.04, -86.74, 'S_of_Fiji_Islands', \

 'April_2_2018', 'GMT_055735', 6.1, 42.0, -24.719, -176.8865, \

 105.38, 11717.46, 'N']

station21 = ['State_Center', 41.91, -93.22, 'SE_of_Lata_Solomon_Islands', \

 'July_17_/2018', 'GMT_070253', 6.0, 38.0, -11.5936, 166.432, \

 105.38, 11717.38, 'Y']

station22 = ['MacAlester_College', 44.94, -93.17, 'SE_of_Lata_Solomon_Islands', \

 'July_17_/2018', 'GMT_070253', 6.0, 38.0, -11.5936, 166.432, 105.49, \

 11729.77, 'N']

station31 = ['LASA_Array', 46.69, -106.22, 'W_of Kandrian_Papua_New_Guinea', \

 'July_19_2018', 'GMT_183032', 6.0, 29.6, -6.1139, 148.7302, \

 104.75, 11646.91, 'Y']

station32 = ['Casper', 42.65, -106.52, 'W_of Kandrian_Papua_New_Guinea', \

 'July_19_2018', 'GMT_183032', 6.0, 29.6, -6.1139, 148.7302, \

 104.97, 11671.54, 'N']

station41 = ['Anaktuvuk_Pass', 68.13, -151.81, 'Central_Mid_Atlantic_Ridge', \

 'July_23_2018', 'GMT_103559', 6.0, 10.0, -0.2994, -19.252, \

 104.88, 11661.31, 'Y']

station42 = ['Knifeblade_Ridge', 69.16, -154.78, 'Central_Mid_Atlantic_Ridge', \

 'July_23_2018', 'GMT_103559', 6.0, 10.0, -0.2994, -19.252, \

 105.0, 11674.84, 'N']

station51 = ['Hockley', 39.96, -95.84, 'WNW_of_Ile_Hunter_New_Caledonia', \

 'September_10_2018', 'GMT_193137', 6.3, 12.0, -21.988, \

 170.1584, 104.07, 11571.44, 'Y']

station52 = ['Oklahoma_Geological_Survey_Observatory', 35.91, -95.79, \

 'WNW_of_Ile_Hunter_New_Caledonia', \

 'September_10_2018', 'GMT_193137', 6.3, 12.0, -21.988, \

 170.1584, 105.82, 11766.23, 'N']

station61 = ['Troy_Canyon', 38.35, -115.59, 'Drake_Passage', \

 'October_29_2018', 'GMT_065421', 6.3, 10.0, -57.434, \

 -66.3834, 104.30, 11597.61, 'Y']

station62 = ['Dugway', 40.19 , -112.81, 'Drake_Passage', \

 'October_29_2018', 'GMT_065421', 6.3, 10.0, -57.434, \

 -66.3834, 105.1, 11686.23, 'N']

station71 = ['Blacksburg', 37.21, -80.42, 'SSE_of_Pangai_Tonga', \

 'November_10_2018', 'GMT_083321', 6.1, 35.0, -20.4538, \

 -174.0081, 104.95, 11669.72, 'Y']

station72 = ['Nordonia_Hills_Middle_School', 41.32, -81.54, \

 'SSE_of_Pangai_Tonga', 'November_10_2018', 'GMT_083321', 6.1, \

 35.0, -20.4538, -174.0081, 105.13, 11689.69, 'N']

station81 = ['Blacksbury', 37.21, -80.42, \

 'E_of_Visokoi_Island_South_Geogia_and_South_\

 Sandwich_Islands', 'November_15_2018', \

 'GMT_200222', 6.4, 15.0, -56.7065, -25.546, 104.71, \

 11642.94, 'Y']

station82 = ['Tazewall', 36.54, -83.55, \

 'E_of_Visokoi_Island_South_Geogia_and_South_\

 Sandwich_Islands', 'November_15_2018', \

 'GMT_200222', 6.4, 15.0, -56.7065, -25.546, 105.31, \

 11709.34, 'N']

station91 = ['Erie', 42.12, -79.99, 'SE_of_Pacific_Rise', 'November_15_2018', \

 'GMT_230901', 6.3, 10.0, -56.2363, -122.0441, 104.56, 11626.33, 'Y']

station92 = ['Minisink_Valley_Middle_School', 41.38, -74.52, \

 'SE_of_Pacific_Rise', 'November_15_2018', 'GMT_230901', 6.3, \

 10.0, -56.2363, -122.0441, 105.55, 11735.57, 'N']

station101 = ['Contact_Creek', 58.26, -155.89, 'SE_of_Easter_Island', \

 'December_19_2018', 'GMT_013740', 6.2, 10.0, -36.118, \

 -101.019, 104.88, 11661.60, 'Y']

station102 = ['Pilot_Point', 57.57, -157.57, 'SE_of_Easter_Island', \

 'December_19_2018', 'GMT_013740', 6.2, 10.0, -36.118, \

 -101.019, 105.00, 11674.46, 'N']

earthquake1 = (station11, station12)

earthquake2 = (station21, station22)

earthquake3 = (station31, station32)

earthquake4 = (station41, station42)

earthquake5 = (station51, station52)

earthquake6 = (station61, station62)

earthquake7 = (station71, station72)

earthquake8 = (station81, station82)

earthquake9 = (station91, station92)

earthquake10 = (station101, station102)

import numpy as np

Verify data meets requirements.

Criteria 1: Is the moment magnitude of the earthquake => 6 Mw?

if earthquake1 [0] [6] < 6.0 or earthquake1 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

if earthquake2 [0] [6] < 6.0 or earthquake2 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

if earthquake3 [0] [6] < 6.0 or earthquake3 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

if earthquake4 [0] [6] < 6.0 or earthquake4 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

if earthquake5 [0] [6] < 6.0 or earthquake5 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

if earthquake6 [0] [6] < 6.0 or earthquake6 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

if earthquake7 [0] [6] < 6.0 or earthquake7 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

if earthquake8 [0] [6] < 6.0 or earthquake8 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

if earthquake9 [0] [6] < 6.0 or earthquake9 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

if earthquake10 [0] [6] < 6.0 or earthquake10 [1] [6] < 6.0:

 print 'The earthquake has a moment magnitude less than 6 Mw.'

Criteria 2: Is the depth of the earthquake < 50 km?

if earthquake1 [0] [7] > 50.0 or earthquake1 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

if earthquake2 [0] [7] > 50.0 or earthquake2 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

if earthquake3 [0] [7] > 50.0 or earthquake3 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

if earthquake4 [0] [7] > 50.0 or earthquake4 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

if earthquake5 [0] [7] > 50.0 or earthquake5 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

if earthquake6 [0] [7] > 50.0 or earthquake6 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

if earthquake7 [0] [7] > 50.0 or earthquake7 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

if earthquake8 [0] [7] > 50.0 or earthquake8 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

if earthquake9 [0] [7] > 50.0 or earthquake9 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

if earthquake10 [0] [7] > 50.0 or earthquake10 [1] [7] > 50.0:

 print 'The earthquake had a depth greater than 50 km.'

Criteria 3: Did the seismic stations measured an S-Wave?

if earthquake1 [0] [12] != 'Y' and earthquake1 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

if earthquake2 [0] [12] != 'Y' and earthquake2 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

if earthquake3 [0] [12] != 'Y' and earthquake3 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

if earthquake4 [0] [12] != 'Y' and earthquake4 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

if earthquake5 [0] [12] != 'Y' and earthquake5 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

if earthquake6 [0] [12] != 'Y' and earthquake6 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

if earthquake7 [0] [12] != 'Y' and earthquake7 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

if earthquake8 [0] [12] != 'Y' and earthquake8 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

if earthquake9 [0] [12] != 'Y' and earthquake9 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

if earthquake10 [0] [12] != 'Y' and earthquake10 [1] [12] != 'N':

 print 'The seismic stations did not measure the S-Wave Shadowing Zone.'

Criteria 4: Are both seismic stations within 500 km apart?

Distance between the seismic stations is calculated using the equation of

a spherical earth projected to a plane.

Earth’s radius is assumed to be 6378 km

beta = float(earthquake1 [0] [1] - earthquake1 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake1 [0] [1] + earthquake1 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake1 [0] [2] - earthquake1 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

print 'The distance between the seismic stations is greater than 500 km.'

beta = float(earthquake2 [0] [1] - earthquake2 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake2 [0] [1] + earthquake2 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake2 [0] [2] - earthquake2 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

 print 'The distance between the seismic stations is greater than 500 km.'

beta = float(earthquake3 [0] [1] - earthquake3 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake3 [0] [1] + earthquake3 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake3 [0] [2] - earthquake3 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

 print 'The distance between the seismic stations is greater than 500 km.'

beta = float(earthquake4 [0] [1] - earthquake4 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake4 [0] [1] + earthquake4 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake4 [0] [2] - earthquake4 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

 print 'The distance between the seismic stations is greater than 500 km.'

beta = float(earthquake5 [0] [1] - earthquake5 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake5 [0] [1] + earthquake5 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake5 [0] [2] - earthquake5 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

 print 'The distance between the seismic stations is greater than 500 km.'

beta = float(earthquake6 [0] [1] - earthquake6 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake6 [0] [1] + earthquake6 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake6 [0] [2] - earthquake6 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

 print 'The distance between the seismic stations is greater than 500 km.'

beta = float(earthquake7 [0] [1] - earthquake7 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake7 [0] [1] + earthquake7 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake7 [0] [2] - earthquake7 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

 print 'The distance between the seismic stations is greater than 500 km.'

beta = float(earthquake8 [0] [1] - earthquake8 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake8 [0] [1] + earthquake8 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake8 [0] [2] - earthquake8 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

 print 'The distance between the seismic stations is greater than 500 km.'

beta = float(earthquake9 [0] [1] - earthquake9 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake9 [0] [1] + earthquake9 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake9 [0] [2] - earthquake9 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

 print 'The distance between the seismic stations is greater than 500 km.'

beta = float(earthquake10 [0] [1] - earthquake10 [1] [1])

beta_radian = np.radians(beta)

mean_beta = float(earthquake10 [0] [1] + earthquake10 [1] [1])/2

mean_beta_radian = np.radians(mean_beta)

gamma = float(earthquake10 [0] [2] - earthquake10 [1] [2])

gamma_radian = np.radians(gamma)

station_distance = 6378 * np.sqrt((beta_radian)**2 + \

 (np.cos(mean_beta_radian) * \

 gamma_radian)**2)

if station_distance > 500:

 print 'The distance between the seismic stations is greater than 500 km.'

Calculated initial radius of the Earth's outer core

Earth's radius is assumed to be 6378 km

angle_theta = float

angle_theta = (earthquake1 [0] [10] + earthquake1 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle alpha = 90 degrees

S-wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake1 [0] [11] + earthquake1 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = float(initial_radius - corr)

Average Radius, Angle, and Distance

total_radius = float

total_radius = 0.0

total_radius = total_radius + radius

total_angle = float

total_angle = 0.0

total_angle = (total_angle + angle_theta)

total_distance = float

total_distance = 0.0

total_distance = (total_distance + distance)

angle_theta = (earthquake2 [0] [10] + earthquake2 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle_alpha = 90 degrees

S-wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake2 [0] [11] + earthquake2 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = initial_radius - corr

Average Radius, Angle, and Distance

total_radius = float(total_radius + radius)

total_angle = float(total_angle + angle_theta)

total_distance = float(total_distance + distance)

angle_theta = (earthquake3 [0] [10] + earthquake3 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle_alpha = 90 degrees

S-Wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake3 [0] [11] + earthquake3 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = initial_radius - corr

Average Radius, Angle, and Distance

total_radius = float(total_radius + radius)

total_angle = float(total_angle + angle_theta)

total_distance = float(total_distance + distance)

angle_theta = (earthquake4 [0] [10] + earthquake4 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle_alpha = 90 degrees

S-wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake4 [0] [11] + earthquake4 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = initial_radius - corr

Average Radius, Angle, and Distance

total_radius = float(total_radius + radius)

total_angle = float(total_angle + angle_theta)

total_distance = float(total_distance + distance)

angle_theta = (earthquake5 [0] [10] + earthquake5 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle_alpha = 90 degrees

S-Wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake5 [0] [11] + earthquake5 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = initial_radius - corr

Average Radius, Angle, and Distance

total_radius = float(total_radius + radius)

total_angle = float(total_angle + angle_theta)

total_distance = float(total_distance + distance)

angle_theta = (earthquake6 [0] [10] + earthquake6 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle_alpha = 90 degrees

S-Wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake6 [0] [11] + earthquake6 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = initial_radius - corr

Average Radius, Angle, and Distance

total_radius = float(total_radius + radius)

total_angle = float(total_angle + angle_theta)

total_distance = float(total_distance + distance)

angle_theta = (earthquake7 [0] [10] + earthquake7 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle_alpha = 90 degrees

S-Wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake7 [0] [11] + earthquake7 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = initial_radius - corr

Average Radius, Angle, and Distance

total_radius = float(total_radius + radius)

total_angle = float(total_angle + angle_theta)

total_distance = float(total_distance + distance)

angle_theta = (earthquake8 [0] [10] + earthquake8 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle_alpha = 90 degrees

S-Wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake8 [0] [11] + earthquake8 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = initial_radius - corr

Average Radius, Angle, and Distance

total_radius = float(total_radius + radius)

total_angle = float(total_angle + angle_theta)

total_distance = float(total_distance + distance)

angle_theta = (earthquake9 [0] [10] + earthquake9 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle_alpha = 90 degrees

S-Wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake9 [0] [11] + earthquake9 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = initial_radius - corr

Average Radius, Angle, and Distance

total_radius = float(total_radius + radius)

total_angle = float(total_angle + angle_theta)

total_distance = float(total_distance + distance)

angle_theta = (earthquake10 [0] [10] + earthquake10 [1] [10])/2

angle_theta_radian = np.radians(angle_theta)

initial_radius = 6378 * np.cos(angle_theta_radian/2)

Calculate correction for radius of Earth's outer core using Snell's Law

At the critial angle, angle_alpha = 90 degrees

S-Wave maximum velocities are V1 = 7.499 and V2 = 7.500 at outer core surface

V1 = 7.49

V2 = 7.50

angle_alpha = np.arcsin(V1/V2)

distance = (earthquake10 [0] [11] + earthquake10 [1] [11])/2

corr = (distance/2) / (np.tan(angle_alpha))

Final calculated radius of Earth's outer core

radius = initial_radius - corr

Average Radius, Angle, and Distance

total_radius = float(total_radius + radius)

total_angle = float(total_angle + angle_theta)

total_distance = float(total_distance + distance)

Results

ave_radius = float(total_radius/10)

ave_angle = float(total_angle/10)

ave_distance = float(total_distance/10)

Print the results

 print 'The calculated average outer core radius is', ave_radius, 'km.'

 print 'The average angle from the epicenter to the start of the S-wave \

 shadowing zone is', ave_angle, 'degrees.'

 print 'The average distance from the epicenter to the start of the \

 S-wave shadowing zone is', ave_distance, 'km.'

